Packages

trait Laws[F[_]] extends MonadEval.Laws[F] with Type[F]

Laws for Suspendable.

Source
Suspendable.scala
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Laws
  2. Type
  3. Laws
  4. Type
  5. Laws
  6. Type
  7. Laws
  8. Type
  9. Laws
  10. Type
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def applicative: Applicative[F]
    Definition Classes
    Type
  2. implicit abstract def functor: Functor[F]
    Definition Classes
    Type
  3. implicit abstract def monad: Monad[F]
    Definition Classes
    Type
  4. implicit abstract def monadEval: MonadEval[F]
    Definition Classes
    Type
  5. implicit abstract def suspendable: Suspendable[F]
    Definition Classes
    Type

Concrete Value Members

  1. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEquiv[F[C]]
    Definition Classes
    Laws
  2. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEquiv[F[B]]
    Definition Classes
    Laws
  3. def applicativeIdentity[A](fa: F[A]): IsEquiv[F[A]]
    Definition Classes
    Laws
  4. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEquiv[F[B]]
    Definition Classes
    Laws
  5. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEquiv[F[B]]
    Definition Classes
    Laws
  6. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEquiv[F[C]]
    Definition Classes
    Laws
  7. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEquiv[F[C]]
    Definition Classes
    Laws
  8. def covariantIdentity[A](fa: F[A]): IsEquiv[F[A]]
    Definition Classes
    Laws
  9. def evalDelaysEffects[A](seed: A, effect: (A) ⇒ A): IsEquiv[F[A]]
  10. def evalEquivalenceWithPure[A](a: A): IsEquiv[F[A]]
    Definition Classes
    Laws
  11. def evalEquivalenceWithRaiseError[A](ex: Throwable)(implicit M: MonadError[F, Throwable]): IsEquiv[F[A]]
    Definition Classes
    Laws
  12. def evalEquivalenceWithSuspend[A](fa: F[A]): IsEquiv[F[A]]
  13. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEquiv[F[C]]
    Definition Classes
    Laws
  14. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEquiv[F[B]]
    Definition Classes
    Laws
  15. def flatMapConsistentMap2[A, B, C](fa: F[A], fb: F[B], f: (A, B) ⇒ C): IsEquiv[F[C]]
    Definition Classes
    Laws
  16. def suspendDelaysEffects[A](seed: A, effect: (A) ⇒ A): IsEquiv[F[A]]
  17. def suspendEquivalenceWithEval[A](a: A): IsEquiv[F[A]]