Packages

trait Laws[F[_]] extends Monad.Laws[F] with Type[F]

Laws for MonadEval.

Source
MonadEval.scala
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Laws
  2. Type
  3. Laws
  4. Type
  5. Laws
  6. Type
  7. Laws
  8. Type
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def applicative: Applicative[F]
    Definition Classes
    Type
  2. implicit abstract def functor: Functor[F]
    Definition Classes
    Type
  3. implicit abstract def monad: Monad[F]
    Definition Classes
    Type
  4. implicit abstract def monadEval: MonadEval[F]
    Definition Classes
    Type

Concrete Value Members

  1. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEquiv[F[C]]
    Definition Classes
    Laws
  2. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEquiv[F[B]]
    Definition Classes
    Laws
  3. def applicativeIdentity[A](fa: F[A]): IsEquiv[F[A]]
    Definition Classes
    Laws
  4. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEquiv[F[B]]
    Definition Classes
    Laws
  5. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEquiv[F[B]]
    Definition Classes
    Laws
  6. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEquiv[F[C]]
    Definition Classes
    Laws
  7. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEquiv[F[C]]
    Definition Classes
    Laws
  8. def covariantIdentity[A](fa: F[A]): IsEquiv[F[A]]
    Definition Classes
    Laws
  9. def evalEquivalenceWithPure[A](a: A): IsEquiv[F[A]]
  10. def evalEquivalenceWithRaiseError[A](ex: Throwable)(implicit M: MonadError[F, Throwable]): IsEquiv[F[A]]
  11. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEquiv[F[C]]
    Definition Classes
    Laws
  12. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEquiv[F[B]]
    Definition Classes
    Laws
  13. def flatMapConsistentMap2[A, B, C](fa: F[A], fb: F[B], f: (A, B) ⇒ C): IsEquiv[F[C]]
    Definition Classes
    Laws