Packages

trait Laws[F[_]] extends Cobind.Laws[F] with Type[F]

Laws for Comonad.

Source
Comonad.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Laws
  2. Type
  3. Laws
  4. Type
  5. Laws
  6. Type
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def cobind: Cobind[F]
    Definition Classes
    Type
  2. implicit abstract def comonad: Comonad[F]
    Definition Classes
    Type
  3. implicit abstract def functor: Functor[F]
    Definition Classes
    Type

Concrete Value Members

  1. def coflatMapAssociativity[A, B, C](fa: F[A], f: (F[A]) ⇒ B, g: (F[B]) ⇒ C): IsEquiv[F[C]]
    Definition Classes
    Laws
  2. def coflatMapIdentity[A, B](fa: F[A]): IsEquiv[F[F[A]]]
    Definition Classes
    Laws
  3. def coflattenCoherence[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEquiv[F[B]]
    Definition Classes
    Laws
  4. def coflattenThroughMap[A](fa: F[A]): IsEquiv[F[F[F[A]]]]
    Definition Classes
    Laws
  5. def comonadLeftIdentity[A](fa: F[A]): IsEquiv[F[A]]
  6. def comonadRightIdentity[A, B](fa: F[A], f: (F[A]) ⇒ B): IsEquiv[B]
  7. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEquiv[F[C]]
    Definition Classes
    Laws
  8. def covariantIdentity[A](fa: F[A]): IsEquiv[F[A]]
    Definition Classes
    Laws
  9. def extractCoflattenIdentity[A](fa: F[A]): IsEquiv[F[A]]
  10. def mapCoflatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEquiv[F[B]]
  11. def mapCoflattenIdentity[A](fa: F[A]): IsEquiv[F[A]]