CANCELABLE [©

Alexandru Nedelcu
@alexelcu | alexn.org | oriel.io

https://twitter.com/alexelcu
http://alexn.org
http://oriel.io

CANCELABLE IO

CATS-EFFECT

» Typelevel Project

» Submitted Apr 20, 2017

» Graduated Mar 14, 2018
» Integrated into:

» FS2, Monix, Http4s

» Eff, Doobie, ...

CANCELABLE IO 4

CATS-EFFECT

» Typelevel Project

» Submitted Apr 20, 2017

» Graduated Mar 14, 2018
» Integrated into:

» FS2, Monix, Http4s

» Eff, Doobie, ...

CANCELABLE IO 5

CATS-EFFECT

» 1.0.0-RC

» 1.0.0-RC2 (soon)

CANCELABLE IO

CATS-EFFECT HISTORY

» Beginning 2017:

» Monix had a Task
» FS2 had a Task
» Scalaz 7 had its own Task

» Libraries like Http4s and Doobie
had to pick one

HOW STANDARDS PROUFERATE:
(EE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

4?! RIDICULOLS!
WE NEED To DEVELOP

.|| ONE UNIVERSAL STANDARD _
SITUATON: || T covere evervoues | | STTUATON:

THERE ARE || use cases. THERE. ARE

|4 COMPETING

New Project: Typelevel Schrodinger

G4+ .L-W alexandru opened this issue on Mar 29, 2017 - 62 comments

Cm)

alexandru commented on Mar 29, 2017 « edited ~ Member

| have a proposal for a new project, called Typelevel Schrodinger.

What this project aims to do is to provide a common interface between various Task and I0 like
data-types and would basically be what Reactive Streams is for streaming, the purpose being to allow
interoperability between various libraries.

| started an initial draft here, but would be cool if we moved this to the Typelevel organization and
collaborate on it:

https://github.com/alexandru/schrodinger

Summary / Current Proposal (Updated: Apr 7, 2017 23:01)

1. we start project schrodinger-core which:

provides Evaluable , Deferrable , Eventual (or Effect) and Async type-classes

is meant as middleware, for interoperability purposes (e.g. conversions)

this is meant for library authors, not users

it should be as stable and as light as possible (i.e. no dependencies) and once we release 1.0.0
I'd like it to remain set in stone as to not create problems for the downstream

Assignees

No one assigned

Labels

None yet

Milestone

No milestone

Notifications

4x Unsubscribe

You're receiving notifications
because you modified the
open/close state.

13 participants

£08° EAE
‘e E

Submitting cats-effect for typelevel incubator membership

G4« L'l djspiewak opened this issue on Apr 20, 2017 - 10 comments

i:p—_\

djspiewak commented on Apr 20, 2017 « edited ~ Member

This is the accompanying typelevel/general issue for typelevel/cats#1617, and a fuller description of the
project is there. I'd like to submit cats-effect as a Typelevel project. As this is the accompanying issue,
| think it would be fair to treat an ultimate -\; by the cats contributors as a similar vote on this issue.

1. The only developers are myself, @mpilquist, @rossabaker and @tpolecat, and this was our
ultimate goal from the inception of the project

2. There is no mention of the typelevel CoC anywhere on the project at present, but that is easily
fixed. Obviously no objections

3. Well, it promotes pure FP with cats in the face of harrowing side-effects, and it does use types.
Some of those types are Unit though, so... 2 out of 3 | guess?

4. Readme is present. Scaladoc is very present. Tut docs are not present at all (ironically). Coming
soon™

At present, the groupld is set to org.typelevel , simply because | don't think it makes sense to use my
personal groupld if the package is cats.effect . | have secretly pushed artifacts to my bintray (mostly
so Mike could get a build running), but ultimately | would rather this project sit within the fully-realized
Sonatype release process on the main groupld. It is my intent to automate this in Travis, along with the
artifact signing, when/if the project is approved.

Assignees

No one assigned

Labels

Incubator approved

Typelevel membership

Milestone

No milestone

Notifications

4x Unsubscribe

You're receiving notifications
because you were mentioned.

4 participants

Al s

CANCELABLE IO

12

EFFECTS

semaphore.acquire(10) +
semaphore.acquire(10)

val value = semaphore.acquire(10)
value + value

CANCELABLE IO

13

EFFECTS

atomic.incrementAndGet(10) +
atomic.incrementAndGet(10)

val value = atomic.incrementAndGet(10)
value + value

CANCELABLE IO

14

EFFECTS

val value: I0[Int] =
atomic.incrementAndGet(10)

for {
rl <— value
r2 <— value

y yield r1 + r2

CANCELABLE IO

EFFECTS

def readLine(in: BufferedReader): IO[String] =
I0(in.readLine())

def readLine(file: File): IO[Stringl = {
val in = I0(new BufferedReader(new FileReader(file)))

in.bracket(readLine) (in => I0(in.close()))

L

CANCELABLE IO

16

EFFECTS

def forked[A] (thunk: => A)
(implicit ec: ExecutionContext): IO[A] =

I0.async { cb =>
ec.execute(() => cb(
try Right(thunk)
catch { case NonFatal(e) => Left(e) }
))
¥

CANCELABLE IO

17

EFFECTS

def forked[A] (thunk: => A)
(implicit timer: Timer[IO0]): IO[A]

timer.shift.flatMap(_ => IO0(thunk))

CANCELABLE IO

18

WHAT IS 107

CANCELABLE IO

19

WHAT IS 107

type I0[+A] = () = Future[A]”

“Not actually true ;-)

CANCELABLE IO

20

ORIGINAL PHILOSOPHY

» Handling of Effect Capture
» Atomic evaluation

» No concurrency, no race conditions, no
cancelation

» Type classes meant for abstracting over effects

» Avoids a Scalaz 7 Task situation

CANCELABLE IO

21

CANCELATION INCEPTION

» Monix Task has been
cancelable since 2016

|

CANCELABLE IO

22

CANCELATION INCEPTION

» Monix Task has been
cancelable since 2016

» John De Goes announces
Scalaz 8's new IO circa Aug 2017

GOMPETITION MODE: ON

waming X

' E Are you sure you want to cancel the |0?
¢

No, cancel | Yes, continue|

CREDITS: @impurepics

https://twitter.com/impurepics/status/996460536136118272

==
LLl]
-
—
—
—
Ll
LLlJ
L
—
-
T
—
i
<[
am

CANCELABLE IO 26

CANCELATION

def delay[A]l(delay: FiniteDuration)(f: = Future[A])
(implicit sc: Scheduler): Future[A] = {

val p = Promise[A]()
sc.scheduleOnce(delay)(() = p.completeWith(f))
p.future

}

def timeout[A](f: Future[A], after: FiniteDuration)
(implicit sc: Scheduler): Future[A] = {

val err = delay(after)(Future.failed(new TimeoutException))
Future.firstCompletedOf(List(f, err))

}

CANCELATION

CANCELABLE IO

28

CANCELATION

def timeout[A](f: Future[A], after: FiniteDuration)
(implicit sc: Scheduler): Future[A] = {

val p = Promise[A]()
val token = SingleAssignCancelable()

token := sc.scheduleOnce(after) {
p.tryFailure(new TimeoutException)

}

p.tryCompleteWith(f)

p.future.onComplete(_ = token.cancel())
p.future

CANCELABLE IO

30

THE NAIVE WAY

def sleep(delay: FiniteDuration, sc: ScheduledExecutorService) =

I0.async[Unit] { cb =

val r = new Runnable { def run() = cb(Right(())) }
sc.schedule(r, delay.length, delay.unit)

}

CANCELABLE IO

31

THE REALISTIC WAY

def sleep(
after: FiniteDuration,
sc: ScheduledExecutorService): IO[(IO[Unit], IO[Unit])]

val complete = Promise[Unit]()

val r = new Runnable { def run() = complete.success(()) }

val token = sc.schedule(r, after.length, after.unit)

val io = I0.async { cb =
complete.future.onComplete(r = cb(r.toEither))

}

val cancel = IO { token.cancel(false); () }
(io, cancel)

I0 {

CANCELABLE IO

32

THE REALISTIC WAY

case class Fiber[A](join: IO[A], cancel: IO[Unit])

def sleep(
after: FiniteDuration,

sc: ScheduledExecutorService): IO[Fiber[Unit]] =

I0 {
//

Fiber(io, cancel)
}

CANCELABLE IO

33

THE IDEAL

def sleep(
delay: FiniteDuration,
sc: ScheduledExecutorService): IO[Unit] = {

I0.cancelable { cb =
// Scheduling of execution

val r = new Runnable { def run() = cb(Right()) }

val token = sc.schedule(r, delay.length, delay.unit)
// Cancellation

I0(token.cancel(false))

CANCELABLE IO

34

THE IDEAL

def timeout[A](io: IO[A], after: FiniteDuration)
(implicit timer: Timer[IO]): IO[A] = {

val fallback =
timer.sleep(after).flatMap { = =

I0.raiseError[A]l(new TimeoutException(s"$after"))

}

I0.race(io, fallback).map(_.fold(a = a, b = b))
}

THE REALIZATION

CANCELABLE IO

36

THE REALIZATION

val task: IO[Unit] = sleep(10.seconds, scheduler)

val forked: IO[Fiber[Unit]] = task.start

// or 1in other words

val forked: IO[(IO[Unit], IO[Unit])] = task.start

CANCELABLE IO

37

THE REALIZATION

IO[A] = IO[(IO[A], IO[Unit])]

CANCELABLE IO 38

THE API

TYPECLASSES

Concurrent

ConcurrentEffect

CANCELABLE IO

41

TYPECLASSES: BRACKET

trait Bracket[F[], E] extends MonadError[F, E] {

def bracketCase[A, B](acquire: F[A])
(use: A = F[B])
(release: (A, ExitCasel[E]) = F[Unit]): F[B]

CANCELABLE IO

42

TYPECLASSES: BRACKET

def readFile(file: File): IO[String] =
I0(scala.io.Source.fromFile("file.txt")).bracket { in =
// Usage part
I0(in.mkString)
}{ in =
// Release
I0(in.close())

}

CANCELABLE IO 43

TYPECLASSES: CONCURRENT

trait Concurrent[F[_]] extends Async[F] {
def cancelable[A](k: (Either[Throwable, A] = Unit) = IO[Unit]): F[A]
def uncancelable[A](fa: F[A]): F[A]
def onCancelRaiseError[A](fa: F[A], e: Throwable): F[A]
def start[A](fa: F[A]): F[Fiber[F, A]]

def racePair[A,B](fa: F[A], fb: F[B]):
F[Either[(A, Fiber[F, B]), (Fiber[F, A], B)]1]

CANCELABLE IO

L4

TYPECLASSES: CONCURRENT

def bracket[A, B](acquire: IO[A])(use: A = IO[B])
(release: (A, ExitCase[Throwable]) = IO[Unit]): IO[B] = {

acquire.flatMap { a =
use(a).onCancelRaiseError(new CancellationException).attempt.flatMap f{

case Right(a) =
// Success
release(a, Completed).uncancelable *> I0.pure(a)

case Left(_:CancellationException) =
// Cancelation
release(a, Canceled(None)).uncancelable %> IO.never

case Left(e) =
// Error
release(a, Error(e)).uncancelable *> IO.raiseError(e)

CANCELABLE IO

46

USE-CASE: TIMER

trait Timer[F[_]] {
def clockRealTime(unit: TimeUnit): F[Long]
def clockMonotonic(unit: TimeUnit): F[Long]

def sleep(duration: FiniteDuration): F[Unit]

def shift: F[Unit]

CANCELABLE IO

47

USE-CASE: TIMEOQUTS

def never: IO[Nothing] = IO.async(_ = ())

never.timeout(10.seconds)

CANCELABLE IO

48

USE-CASE: INTERVALS

package monix.tail

// ...
object Iterant {

def intervalAtFixedRate[F[_]](period: FiniteDuration)
(implicit F: Async[F], timer: Timer[F]): Iterant[F, Long]
}

Iterant[IO].intervalAtFixedRate(10.seconds)
.mapEval(_ = task)

277

CANCELABLE IO

49

USE-CASE: CANCELABLE LOOPS

def fib(n: Int, a: Long, b: Long): IO[Long] =
I0.suspend {

if (n > 0) {
val next = fib(n - 1, b, a + b)
// Handles cancellation
if (n % 128 = 0) IO0.cancelBoundary *> next
else next

} else {
I0.pure(a)

CANCELABLE IO

50

USE-CASE: LOCKS

import cats.effect.concurrent.MVar

final class MLock(mvar: Mvar[IO, Unit]) {

def acquire: IO[Unit] =
mvar.take

def release: IO[Unit] =
mvar.put(())

def withPermit[A](fa: IO[A]): IO[A] =
acquire.bracket(_ = fa)(_ = release)
}

object MLock {
def apply(): IO[MLock] =
MVar[IO].empty[Unit].map(ref = new MLock(ref))

CANCELABLE IO

51

USE-CASE: LOCKS

lock.withPermit(IO(somethingExpensive))
.timeout(10.seconds)

CANCELABLE IO

52

USE-CASE: SEMAPHORE

import cats.effect.concurrent.Semaphore

for {

semaphore <« Semaphore[IO0](1)

/] ...

taskl
task?2

/...
r < 1I0

}
} yield r

semaphore.withLock(IO(somethingExpensivel))
semaphore.withLock(IO(somethingExpensive2))

.race(task1l, task2) {

CANCELABLE IO

53

USE-CASE: APP INTERRUPT

object Main extends IOApp {
import ExitCode.Success

def run(args: List[String]): IO[ExitCode] =
I0.unit.bracket { =
for {

¢« I0(println("Started!"))
_ ¢ I0.never

} yvield Success

P =
IO(println("Canceled!"))

}

CANCELABLE IO

)

DESIGN CHOICES

» Keeps the simplicity ideals of the project alive

» 10 is not and will not be as sophisticated as
Monix's Task

» 10 is explicit by design
» 10.shift

» 10.cancelBoundary

CANCELABLE IO

56

DESIGN CHOICES

» Keeps the simplicity ideals of the project alive

» 10 is not and will not be as sophisticated as
Monix's Task

» 10 is explicit by design
» 10.shift

» 10.cancelBoundary

CANCELABLE IO

57

DESIGN CHOICES

» Separation of concerns

» Sync vs Async, Async vs Concurrent
» No auto-cancelation

» Simplifies everything

» Auto-cancelation infects the entire type-class
hierarchy (e.g. a Monad restriction is no longer
just a Monad restriction)

CANCELABLE IO

58

DESIGN CHOICES

» Separation of concerns

» Sync vs Async, Async vs Concurrent
» No auto-cancelation

» Simplifies everything

» Auto-cancelation infects the entire type-class
hierarchy (e.g. a Monad restriction is no longer
just a Monad restriction)

CANCELABLE IO

59

CATS-EFFECT

» 1.0.0-RC2 (soon)
» Ref
» Deferred

» Semaphore
» MVar
» IOApp

QUESTIONS?

g
-
E ‘
k-
E:
i
RS
o

wy typelevel.org/cats-eftect
() @typelevel/cats-effect

Y @alexelcu

http://typelevel.org/cats-effect

